Balanced category

In mathematics, especially in category theory, a balanced category is a category in which every bimorphism (a morphism that is both a monomorphism and epimorphism) is an isomorphism.

The category of topological spaces is not balanced (since continuous bijections are not necessarily homeomorphisms), while a topos is balanced. This is one of the reasons why a topos is said to be nicer.

Examples

The following categories are balanced:

An additive category may not be balanced. Contrary to what one might expect, a balanced pre-abelian category may not be abelian.

A quasitopos is similar to a topos but may not be balanced.

See also

  • quasi-abelian category

Sources

  • Johnstone, P. T. (1977). Topos theory. Academic Press.
  • Roy L. Crole, Categories for types, Cambridge University Press (1994)

Further reading

  • balanced category at the nLab

wikipedia, wiki, encyclopedia, book, library, article, read, free download, Information about Balanced category, What is Balanced category? What does Balanced category mean?