Comparison of commercial battery types

This is a list of commercially available battery types summarizing some of their characteristics for ready comparison.

Common characteristics

Cell chemistry Also known as Electrode Re­charge­able Com­mercial­ized Voltage Energy density Specific power Cost Discharge efficiency Self-discharge rate Shelf life
Anode Electro­lyte Cathode Cutoff Nominal 100% SOC by mass by volume
year V V V MJ/kg
(Wh/kg)
MJ/L
(Wh/L)
W/kg Wh/$
($/kWh)
% %/month years
Lead–acid SLA
VRLA
PbAc
Lead H2SO4 Lead dioxide Yes 1881 1.75 2.1 2.23–2.32 0.11–0.14
(30–40)
0.22–0.27
(60–75)
180 5.27–13.55
(74–190)
50–92 3–20
Zinc–carbon Carbon–zinc Zinc NH4Cl Manganese (IV) oxide No 1898 0.75–0.9 1.5 0.13
(36)
0.33
(92)
10–27 2.41
(415)
50–60 0.32 3–5
Zinc–air PR KOH Oxygen No 1932 0.9 1.45–1.65 1.59
(442)
6.02
(1,673)
100 2.11
(474)
60–70 0.17 3
Mercury oxide–zinc Mercuric oxide
Mercury cell
NaOH/ KOH Mercuric oxide No 1942– 1996 0.9 1.35 0.36–0.44
(99–123)
1.1–1.8
(300–500)
2
Alkaline Zn/MnO
2

LR
KOH Manganese (IV) oxide No 1949 0.9 1.5 1.6 0.31–0.68
(85–190)
0.90–1.56
(250–434)
50 8.17
(122)
45–85 0.17 5–10
Rechargeable alkaline RAM KOH Yes 1992 0.9 1.57 1.6 <1
Silver-oxide SR NaOH/ KOH Silver oxide No 1960 1.2 1.55 1.6 0.47
(130)
1.8
(500)
Nickel–zinc NiZn KOH Nickel oxide hydroxide Yes 2009 0.9 1.65 1.85 13
Nickel–iron NiFe Iron KOH Yes 1901 0.75 1.2 1.65 0.07–0.09
(19–25)
0.45
(125)
100 3.21–4.27
(234–312)
20–30 30– 50
Nickel–cadmium NiCd
NiCad
Cadmium KOH Yes c. 1960 0.9–1.05 1.2 1.3 0.11
(30)
0.36
(100)
150–200 10
Nickel–hydrogen NiH
2

Ni-H
2
Hydrogen KOH Yes 1975 1.0 1.55 0.16–0.23
(45–65)
0.22
(60)
150–200 5
Nickel–metal hydride NiMH
Ni-MH
Metal hydride KOH Yes 1990 0.9–1.05 1.2 1.3 0.36
(100)
1.44
(401)
250–1,000 2.56
(390)
30
Low self-discharge nickel–metal hydride LSD NiMH Yes 2005 0.9–1.05 1.2 1.3 0.34
(95)
1.27
(353)
250–1,000 0.42
Lithium–manganese dioxide Lithium
Li-MnO
2

CR
Li-Mn
Lithium Manganese dioxide No 1976 2 3 0.54–1.19
(150–330)
1.1–2.6
(300–710)
250–400 1 5–10
Lithium–carbon monofluoride Li-(CF)
x

BR
Carbon monofluoride No 1976 2 3 0.94–2.81
(260–780)
1.58–5.32
(440–1,478)
50–80 0.2–0.3 15
Lithium–iron disulfide Li-FeS
2

FR
Iron disulfide No 1989 0.9 1.5 1.8 1.07
(297)
2.1
(580)
10-20
Lithium–titanate Li
4
Ti
5
O
12

LTO
Lithium manganese oxide or Lithium nickel manganese cobalt oxide Yes 2008 1.6–1.8 2.3–2.4 2.8 0.22–0.40
(60–110)
0.64
(177)
3,000– 5,100 0.38
(2620)
85 2–5 10–20
Lithium cobalt oxide LiCoO
2

ICR
LCO
Li‑cobalt
Graphite LiPF6/ LiBF4/ LiClO4 Lithium cobalt oxide Yes 1991 2.5 3.7 4.2 0.70
(195)
2.0
(560)
2.14
(468)
Lithium iron phosphate LiFePO
4

IFR
LFP
Li‑phosphate
Lithium iron phosphate Yes 1996 2 3.2 3.65 0.32–0.62
(90–172)
1.43
(396)
200–1,200 7.2 (139) 4.5 20 years
Lithium manganese oxide LiMn
2
O
4

IMR
LMO
Li‑manganese
Lithium manganese oxide Yes 1999 2.5 3.9 4.2 0.54
(150)
1.5
(420)
2.14
(468)
Lithium nickel cobalt aluminium oxides LiNiCoAlO
2

NCA
NCR
Li‑aluminium
Lithium nickel cobalt aluminium oxide Yes 1999 3.0 3.6 4.3 0.79
(220)
2.2
(600)
Lithium nickel manganese cobalt oxide LiNi
x
Mn
y
Co
1-x-y
O
2

INR
NMC
NCM
Lithium nickel manganese cobalt oxide Yes 2008 2.5 3.6 4.2 0.74
(205)
2.1
(580)

^† Cost in inflation-adjusted 2024 USD.

^‡ Typical. See Lithium-ion battery § Negative electrode for alternative electrode materials.

Rechargeable characteristics

Cell chemistry Charge efficiency Cycle durability
% # 100% depth of discharge (DoD) cycles
Lead–acid 50–92 50–100 (500@40%DoD)
Rechargeable alkaline 5–100
Nickel–zinc 100 to 50% capacity
Nickel–iron 65–80 5,000
Nickel–cadmium 70–90 500
Nickel–hydrogen 85 20,000
Nickel–metal hydride 66 300–800
Low self-discharge nickel–metal hydride battery 500–1,500
Lithium cobalt oxide 90 500–1,000
Lithium–titanate 85–90 6,000–30,000 to 90% capacity
Lithium iron phosphate 90 2,500–12,000 to 80% capacity
Lithium manganese oxide 90 300–700

Thermal runaway

Under certain conditions, some battery chemistries are at risk of thermal runaway, leading to cell rupture or combustion. As thermal runaway is determined not only by cell chemistry but also cell size, cell design and charge, only the worst-case values are reflected here.

Cell chemistry Overcharge Overheat
Onset Onset Runaway Peak
SOC% °C °C °C/min
Lithium cobalt oxide 150 165 190 440
Lithium iron phosphate 100 220 240 21
Lithium manganese oxide 110 210 240 100+
Lithium nickel cobalt aluminium oxide 125 140 195 260
Lithium nickel manganese cobalt oxide 170 160 230 100+

NiCd vs. NiMH vs. Li-ion vs. Li–polymer vs. LTO

Types Cell Voltage Self-discharge Memory Cycles Times Temperature Weight
NiCd 1.2V 20%/month Yes Up to 800 -20 °C to 60 °C Heavy
NiMH 1.2V 30%/month Mild Up to 500 -20 °C to 70 °C Middle
Low Self Discharge NiMH 1.2V 3%/year–1%/month No 500–2,000 -20 °C to 70 °C Middle
Li-ion (LCO) 3.6V 5–10%/month No 500–1,000 -20 °C to 60 °C Light
LiFePO4 (LFP) 3.2V 2–5%/month No 2,500–12,000 -20 °C to 60 °C Light
LiPo (LCO) 3.7V 5–10%/month No 500–1,000 -20 °C to 60 °C Lightest
Li–Ti (LTO) 2.4V 2–5%/month No 6,000–20,000 -40 °C to 75 °C Light

See also

  • Battery nomenclature
  • Experimental rechargeable battery types
  • Aluminium battery
  • List of battery sizes
  • List of battery types
  • Search for the Super Battery (2017 PBS film)

wikipedia, wiki, encyclopedia, book, library, article, read, free download, Information about Comparison of commercial battery types, What is Comparison of commercial battery types? What does Comparison of commercial battery types mean?