Definition Converse nonimplication is notated P ↚ Q {\displaystyle P\nleftarrow Q} , or P ⊄ Q {\displaystyle P\not \subset Q} , and is logically equivalent to ¬ ( P ← Q ) {\displaystyle \neg (P\leftarrow Q)} and ¬ P ∧ Q {\displaystyle \neg P\wedge Q} .
Truth table The truth table of A ↚ B {\displaystyle A\nleftarrow B} .
A {\displaystyle A} B {\displaystyle B} A ↚ B {\displaystyle A\nleftarrow B} F F F F T T T F F T T F
Notation Converse nonimplication is notated p ↚ q {\textstyle p\nleftarrow q} , which is the left arrow from converse implication ( ← {\textstyle \leftarrow } ), negated with a stroke (/ ).
Alternatives include
p ⊄ q {\textstyle p\not \subset q} , which combines converse implication's ⊂ {\displaystyle \subset } , negated with a stroke (/ ). p ← ~ q {\textstyle p{\tilde {\leftarrow }}q} , which combines converse implication's left arrow ( ← {\textstyle \leftarrow } ) with negation's tilde ( ∼ {\textstyle \sim } ). Mpq , in Bocheński notation
Properties falsehood-preserving : The interpretation under which all variables are assigned a truth value of 'false' produces a truth value of 'false' as a result of converse nonimplication
Natural language
Grammatical Example,
If it rains (P) then I get wet (Q), just because I am wet (Q) does not mean it is raining, in reality I went to a pool party with the co-ed staff, in my clothes (~P) and that is why I am facilitating this lecture in this state (Q).
Rhetorical Q does not imply P.
Colloquial Not P, but Q.
Boolean algebra Converse Nonimplication in a general Boolean algebra is defined as q ↚ p = q ′ p {\textstyle q\nleftarrow p=q'p} .
Example of a 2-element Boolean algebra: the 2 elements {0,1} with 0 as zero and 1 as unity element, operators ∼ {\textstyle \sim } as complement operator, ∨ {\textstyle \vee } as join operator and ∧ {\textstyle \wedge } as meet operator, build the Boolean algebra of propositional logic .
∼ x {\textstyle {}\sim x} 1 0 x 0 1
and y 1 1 1 0 0 1 y ∨ x {\textstyle y_{\vee }x} 0 1 x
and y 1 0 1 0 0 0 y ∧ x {\textstyle y_{\wedge }x} 0 1 x
then y ↚ x {\displaystyle \scriptstyle {y\nleftarrow x}\!} means y 1 0 0 0 0 1 y ↚ x {\displaystyle \scriptstyle {y\nleftarrow x}\!} 0 1 x
(Negation) (Inclusive or) (And) (Converse nonimplication)
Example of a 4-element Boolean algebra: the 4 divisors {1,2,3,6} of 6 with 1 as zero and 6 as unity element, operators c {\displaystyle \scriptstyle {^{c}}\!} (co-divisor of 6) as complement operator, ∨ {\displaystyle \scriptstyle {_{\vee }}\!} (least common multiple) as join operator and ∧ {\displaystyle \scriptstyle {_{\wedge }}\!} (greatest common divisor) as meet operator, build a Boolean algebra.
x c {\displaystyle \scriptstyle {x^{c}}\!} 6 3 2 1 x 1 2 3 6
and y 6 6 6 6 6 3 3 6 3 6 2 2 2 6 6 1 1 2 3 6 y ∨ x {\displaystyle \scriptstyle {y_{\vee }x}\!} 1 2 3 6 x
and y 6 1 2 3 6 3 1 1 3 3 2 1 2 1 2 1 1 1 1 1 y ∧ x {\displaystyle \scriptstyle {y_{\wedge }x}} 1 2 3 6 x
then y ↚ x {\displaystyle \scriptstyle {y\nleftarrow x}\!} means y 6 1 1 1 1 3 1 2 1 2 2 1 1 3 3 1 1 2 3 6 y ↚ x {\displaystyle \scriptstyle {y\nleftarrow x}\!} 1 2 3 6 x
(Co-divisor 6) (Least common multiple) (Greatest common divisor) (x's greatest divisor coprime with y)
Properties
Non-associative r ↚ ( q ↚ p ) = ( r ↚ q ) ↚ p {\displaystyle r\nleftarrow (q\nleftarrow p)=(r\nleftarrow q)\nleftarrow p} if and only if r p = 0 {\displaystyle rp=0} #s5 (In a two-element Boolean algebra the latter condition is reduced to r = 0 {\displaystyle r=0} or p = 0 {\displaystyle p=0} ). Hence in a nontrivial Boolean algebra Converse Nonimplication is nonassociative . ( r ↚ q ) ↚ p = r ′ q ↚ p (by definition) = ( r ′ q ) ′ p (by definition) = ( r + q ′ ) p (De Morgan's laws) = ( r + r ′ q ′ ) p (Absorption law) = r p + r ′ q ′ p = r p + r ′ ( q ↚ p ) (by definition) = r p + r ↚ ( q ↚ p ) (by definition) {\displaystyle {\begin{aligned}(r\nleftarrow q)\nleftarrow p&=r'q\nleftarrow p&{\text{(by definition)}}\\&=(r'q)'p&{\text{(by definition)}}\\&=(r+q')p&{\text{(De Morgan's laws)}}\\&=(r+r'q')p&{\text{(Absorption law)}}\\&=rp+r'q'p\\&=rp+r'(q\nleftarrow p)&{\text{(by definition)}}\\&=rp+r\nleftarrow (q\nleftarrow p)&{\text{(by definition)}}\\\end{aligned}}}
Clearly, it is associative if and only if r p = 0 {\displaystyle rp=0} .
Non-commutative q ↚ p = p ↚ q {\displaystyle q\nleftarrow p=p\nleftarrow q} if and only if q = p {\displaystyle q=p} #s6 . Hence Converse Nonimplication is noncommutative .
Neutral and absorbing elements 0 is a left neutral element ( 0 ↚ p = p {\displaystyle 0\nleftarrow p=p} ) and a right absorbing element ( p ↚ 0 = 0 {\displaystyle {p\nleftarrow 0=0}} ). 1 ↚ p = 0 {\displaystyle 1\nleftarrow p=0} , p ↚ 1 = p ′ {\displaystyle p\nleftarrow 1=p'} , and p ↚ p = 0 {\displaystyle p\nleftarrow p=0} . Implication q → p {\displaystyle q\rightarrow p} is the dual of converse nonimplication q ↚ p {\displaystyle q\nleftarrow p} #s7 .
Converse Nonimplication is noncommutative Step Make use of Resulting in s.1 Definition q ← ~ p = q ′ p {\displaystyle \scriptstyle {q{\tilde {\leftarrow }}p=q'p\,}\!} s.2 Definition p ← ~ q = p ′ q {\displaystyle \scriptstyle {p{\tilde {\leftarrow }}q=p'q\,}\!} s.3 s.1 s.2 q ← ~ p = p ← ~ q ⇔ q ′ p = q p ′ {\displaystyle \scriptstyle {q{\tilde {\leftarrow }}p=p{\tilde {\leftarrow }}q\ \Leftrightarrow \ q'p=qp'\,}\!} s.4 q {\displaystyle \scriptstyle {q\,}\!} = {\displaystyle \scriptstyle {=\,}\!} q .1 {\displaystyle \scriptstyle {q.1\,}\!} s.5 s.4.right - expand Unit element = {\displaystyle \scriptstyle {=\,}\!} q . ( p + p ′ ) {\displaystyle \scriptstyle {q.(p+p')\,}\!} s.6 s.5.right - evaluate expression = {\displaystyle \scriptstyle {=\,}\!} q p + q p ′ {\displaystyle \scriptstyle {qp+qp'\,}\!} s.7 s.4.left = s.6.right q = q p + q p ′ {\displaystyle \scriptstyle {q=qp+qp'\,}\!} s.8 q ′ p = q p ′ {\displaystyle \scriptstyle {q'p=qp'\,}\!} ⇒ {\displaystyle \scriptstyle {\Rightarrow \,}\!} q p + q p ′ = q p + q ′ p {\displaystyle \scriptstyle {qp+qp'=qp+q'p\,}\!} s.9 s.8 - regroup common factors ⇒ {\displaystyle \scriptstyle {\Rightarrow \,}\!} q . ( p + p ′ ) = ( q + q ′ ) . p {\displaystyle \scriptstyle {q.(p+p')=(q+q').p\,}\!} s.10 s.9 - join of complements equals unity ⇒ {\displaystyle \scriptstyle {\Rightarrow \,}\!} q .1 = 1. p {\displaystyle \scriptstyle {q.1=1.p\,}\!} s.11 s.10.right - evaluate expression ⇒ {\displaystyle \scriptstyle {\Rightarrow \,}\!} q = p {\displaystyle \scriptstyle {q=p\,}\!} s.12 s.8 s.11 q ′ p = q p ′ ⇒ q = p {\displaystyle \scriptstyle {q'p=qp'\ \Rightarrow \ q=p\,}\!} s.13 q = p ⇒ q ′ p = q p ′ {\displaystyle \scriptstyle {q=p\ \Rightarrow \ q'p=qp'\,}\!} s.14 s.12 s.13 q = p ⇔ q ′ p = q p ′ {\displaystyle \scriptstyle {q=p\ \Leftrightarrow \ q'p=qp'\,}\!} s.15 s.3 s.14 q ← ~ p = p ← ~ q ⇔ q = p {\displaystyle \scriptstyle {q{\tilde {\leftarrow }}p=p{\tilde {\leftarrow }}q\ \Leftrightarrow \ q=p\,}\!}
Implication is the dual of Converse Nonimplication Step Make use of Resulting in s.1 Definition dual ( q ← ~ p ) {\displaystyle \scriptstyle {\operatorname {dual} (q{\tilde {\leftarrow }}p)\,}\!} = {\displaystyle \scriptstyle {=\,}\!} dual ( q ′ p ) {\displaystyle \scriptstyle {\operatorname {dual} (q'p)\,}\!} s.2 s.1.right - .'s dual is + = {\displaystyle \scriptstyle {=\,}\!} q ′ + p {\displaystyle \scriptstyle {q'+p\,}\!} s.3 s.2.right - Involution complement = {\displaystyle \scriptstyle {=\,}\!} ( q ′ + p ) ″ {\displaystyle \scriptstyle {(q'+p)''\,}\!} s.4 s.3.right - De Morgan's laws applied once = {\displaystyle \scriptstyle {=\,}\!} ( q p ′ ) ′ {\displaystyle \scriptstyle {(qp')'\,}\!} s.5 s.4.right - Commutative law = {\displaystyle \scriptstyle {=\,}\!} ( p ′ q ) ′ {\displaystyle \scriptstyle {(p'q)'\,}\!} s.6 s.5.right = {\displaystyle \scriptstyle {=\,}\!} ( p ← ~ q ) ′ {\displaystyle \scriptstyle {(p{\tilde {\leftarrow }}q)'\,}\!} s.7 s.6.right = {\displaystyle \scriptstyle {=\,}\!} p ← q {\displaystyle \scriptstyle {p\leftarrow q\,}\!} s.8 s.7.right = {\displaystyle \scriptstyle {=\,}\!} q → p {\displaystyle \scriptstyle {q\rightarrow p\,}\!} s.9 s.1.left = s.8.right dual ( q ← ~ p ) = q → p {\displaystyle \scriptstyle {\operatorname {dual} (q{\tilde {\leftarrow }}p)=q\rightarrow p\,}\!}
Computer science An example for converse nonimplication in computer science can be found when performing a right outer join on a set of tables from a database , if records not matching the join-condition from the "left" table are being excluded.
wikipedia, wiki, encyclopedia, book, library, article, read, free download, Information about Converse nonimplication, What is Converse nonimplication? What does Converse nonimplication mean?
© 2025 www.dl1.en-us.nina.az — All rights reserved.