Physics often deals with classical models where the dynamical variables are a collection of functions {φα}α over a d-dimensional space/spacetime manifold M where α is the "flavor" index. This involves functionals over the φ's, functional derivatives, functional integrals, etc. From a functional point of view this is equivalent to working with an infinite-dimensional smooth manifold where its points are an assignment of a function for each α, and the procedure is in analogy with differential geometry where the coordinates for a point x of the manifold M are φα(x).
In the DeWitt notation (named after theoretical physicist Bryce DeWitt), φα(x) is written as φi where i is now understood as an index covering both α and x.
So, given a smooth functional A, A,i stands for the functional derivative
as a functional of φ. In other words, a "1-form" field over the infinite dimensional "functional manifold".
In integrals, the Einstein summation convention is used. Alternatively,
wikipedia, wiki, encyclopedia, book, library, article, read, free download, Information about DeWitt notation, What is DeWitt notation? What does DeWitt notation mean?