This article includes a list of general references, but it lacks sufficient corresponding inline citations. (November 2025) |
Electroceramics are a class of ceramic materials used primarily for their electrical properties.
While ceramics have traditionally been admired and used for their mechanical, thermal and chemical stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Such materials are now classified under electroceramics, as distinguished from other functional ceramics such as advanced structural ceramics.
Historically, developments in the various subclasses of electroceramics have paralleled the growth of new technologies. Examples include: ferroelectrics - high dielectric capacitors, non-volatile memories; ferrites - data and information storage; solid electrolytes - energy storage and conversion; piezoelectrics - sonar; semiconducting oxides - environmental monitoring.[citation needed]
Dielectric ceramics
Dielectric materials used for construction of ceramic capacitors include: Lead Zirconate titanate (PZT), Barium titanate(BT), strontium titanate (ST), calcium titanate (CT), magnesium titanate (MT), calcium magnesium titanate (CMT), zinc titanate (ZT), lanthanum titanate (LT), and neodymium titanate (NT), barium zirconate (BZ), calcium zirconate (CZ), lead magnesium niobate (PMN), lead zinc niobate (PZN), lithium niobate (LN), barium stannate (BS), calcium stannate (CS), magnesium aluminium silicate, magnesium silicate, barium tantalate, titanium dioxide, niobium oxide, zirconia, silica, sapphire, beryllium oxide, and zirconium tin titanate
Some piezoelectric materials can be used as well; the EIA Class 2 dielectrics are based on mixtures rich on barium titanate. In turn, EIA Class 1 dielectrics contain little or no barium titanate.
Electronically conductive ceramics
Indium tin oxide (ITO), lanthanum-doped strontium titanate (SLT), yttrium-doped strontium titanate (SYT)
Fast ion conductor ceramics
Yttria-stabilized zirconia (YSZ), gadolinium-doped ceria (GDC), lanthanum strontium gallate magnesite(LSGM), beta alumina, beta alumina
Piezoelectric and ferroelectric ceramics
Commercially used piezoceramic is primarily lead zirconate titanate (PZT). Barium titanate (BT), strontium titanate (ST), quartz, and others are also used.
See Category:Piezoelectric materials.
Magnetic ceramics
Ferrites including iron(III) oxide and strontium carbonate display magnetic properties. Lanthanum strontium manganite exhibits colossal magnetoresistance.
See also
- Ceramic
- Genoa Joint Laboratories
- Strontium titanate
- Barium titanate
- Lead zirconate titanate
Further reading
- Newnham, R E (February 1989). "Electroceramics". Reports on Progress in Physics. 52 (2): 123–156. doi:10.1088/0034-4885/52/2/001.
- Moulson, A. J.; Herbert, J. M. (2003). Electroceramics. doi:10.1002/0470867965. ISBN 978-0-471-49747-9.
- Wang, Ge; Lu, Zhilun; Li, Yong; Li, Linhao; Ji, Hongfen; Feteira, Antonio; Zhou, Di; Wang, Dawei; Zhang, Shujun; Reaney, Ian M (26 May 2021). "Electroceramics for High-Energy Density Capacitors: Current Status and Future Perspectives". Chemical Reviews. 121 (10): 6124–6172. doi:10.1021/acs.chemrev.0c01264. PMC 8277101. PMID 33909415.
- Setter, Nava (January 2001). "Electroceramics: looking ahead". Journal of the European Ceramic Society. 21 (10–11): 1279–1293. doi:10.1016/S0955-2219(01)00217-5.
- Pandey, R. K., ed. (2019). Fundamentals of Electroceramics. doi:10.1002/9781119057093. ISBN 978-1-119-05734-5.
- Newnham, Robert E.; Ruschau, Gregory R. (March 1991). "Smart Electroceramics". Journal of the American Ceramic Society. 74 (3): 463–480. doi:10.1111/j.1151-2916.1991.tb04047.x.
- Waser, Rainer (June 1999). "Modeling of electroceramics—Applications and prospects". Journal of the European Ceramic Society. 19 (6–7): 655–664. doi:10.1016/S0955-2219(98)00293-3.
- Irvine, John T. S.; Sinclair, Derek C.; West, Anthony R. (March 1990). "Electroceramics: Characterization by Impedance Spectroscopy". Advanced Materials. 2 (3): 132–138. Bibcode:1990AdM.....2..132I. doi:10.1002/adma.19900020304.
- van de Krol, R (September 2002). "Electroceramics—the role of interfaces". Solid State Ionics. 150 (1–2): 167–179. doi:10.1016/S0167-2738(02)00273-4.
- Feng, Yu; Wu, Jiagang; Chi, Qingguo; Li, Weili; Yu, Yang; Fei, Weidong (12 February 2020). "Defects and Aliovalent Doping Engineering in Electroceramics". Chemical Reviews. 120 (3): 1710–1787. Bibcode:2020ChRv..120.1710F. doi:10.1021/acs.chemrev.9b00507. PMID 31899631.
wikipedia, wiki, encyclopedia, book, library, article, read, free download, Information about Electroceramics, What is Electroceramics? What does Electroceramics mean?