Isotopes of neodymium

Naturally occurring neodymium (60Nd) is composed of five stable isotopes, 142Nd, 143Nd, 145Nd, 146Nd and 148Nd, with 142Nd being the most abundant (27.2% natural abundance), and two long-lived radioisotopes, 144Nd and 150Nd. In all, 35 radioisotopes of neodymium have been characterized up to now, with the most stable being naturally occurring isotopes 144Nd (alpha decay, a half-life (t1/2) of 2.29×1015 years) and 150Nd (double beta decay, t1/2 of 9.3×1018 years), and for practical purposes they can be considered to be stable as well. The radioactivity of 144Nd is due to it having 84 neutrons (two more than 82, which is a magic number corresponding to a stable neutron configuration), and so it may emit an alpha particle (which has 2 neutrons) to form cerium-140 with 82 neutrons.

Isotopes of neodymium (60Nd)
Main isotopes Decay
Isotope abun­dance half-life (t1/2) mode pro­duct
140Nd synth 3.37 d β+ 140Pr
142Nd 27.2% stable
143Nd 12.2% stable
144Nd 23.8% 2.29×1015 y α 140Ce
145Nd 8.3% stable
146Nd 17.2% stable
147Nd synth 10.98 d β 147Pm
148Nd 5.80% stable
150Nd 5.60% 9.3×1018 y ββ 150Sm
Standard atomic weight Ar°(Nd)
  • 144.242±0.003
  • 144.24±0.01 (abridged)

All of the remaining radioactive isotopes have half-lives that are less than 11 days, and the majority of these have half-lives that are less than 70 seconds. The most stable artificial isotope is 147Nd, the parent of promethium, with a half-life of 10.98 days. This element also has 15 known meta states with the most stable being 139mNd (t1/2 5.5 hours), 135mNd (t1/2 5.5 minutes) and 133m1Nd (t1/2 ~70 seconds).

The primary decay modes for isotopes lighter than the lightest and most abundant stable isotope, which is also the only theoretically stable isotope, 142Nd, are electron capture and positron decay, and the primary mode for heavier radioisotopes is beta decay. The primary decay products for lighter radioisotopes are praseodymium isotopes and the primary products for heavier ones are promethium isotopes.

Neodymium isotopes as fission products

Neodymium is one of the more common fission products that results from the splitting of uranium-233, uranium-235, plutonium-239 and plutonium-241. The distribution of resulting neodymium isotopes is distinctly different than those found in crustal rock formation on Earth. One of the methods used to verify that the Oklo Fossil Reactors in Gabon had produced a natural nuclear fission reactor some two billion years before present was to compare the relative abundances of neodymium isotopes found at the reactor site with those found elsewhere on Earth.

List of isotopes


Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
125Nd 60 65 124.94840(43)# 0.65(15) s β+ 125Pr (5/2)(+#)
β+, p (?%) 124Ce
126Nd 60 66 125.94269(32)# 1# s
[>200 ns]
0+
127Nd 60 67 126.93998(32)# 1.8(4) s β+ 127Pr 5/2+#
β+, p (?%) 126Ce
128Nd 60 68 127.93502(22)# 5# s 0+
129Nd 60 69 128.93304(22)# 6.8(6) s β+ 129Pr 7/2−
β+, p (?%) 128Ce
129m1Nd 17 keV 2.6(4) s β+ 129Pr 1/2+
β+, p (?%) 128Ce
129m2Nd 39 keV 2.6(4) s β+ 129Pr 3/2+
β+, p (?%) 128Ce
129m3Nd 108 keV IT (?%) 129m2Nd 5/2+
IT (?%) 129Nd
129m4Nd 1893 keV IT 129Nd (17/2+)
129m5Nd 2109 keV IT 129Nd (19/2+)
129m6Nd 2284 keV 0.48(4) μs IT 129Nd (21/2+)
130Nd 60 70 129.928506(30) 21(3) s β+ 130Pr 0+
131Nd 60 71 130.927248(30) 25.4(9) s β+ 131Pr (5/2+)
β+, p (?%) 130Ce
132Nd 60 72 131.923321(26) 1.56(10) min β+ 132Pr 0+
133Nd 60 73 132.922348(50) 70(10) s β+ 133Pr (7/2+)
133m1Nd 127.97(12) keV ~70 s β+ (?%) 133Pr (1/2)+
IT (?%) 133Nd
133m2Nd 176.10(10) keV 301(18) ns IT 133Nd (9/2–)
134Nd 60 74 133.918790(13) 8.5(15) min β+ 134Pr 0+
134mNd 2293.0(4) keV 389(17) μs IT 134Nd 8–
135Nd 60 75 134.918181(21) 12.4(6) min β+ 135Pr 9/2–
135mNd 64.95(24) keV 5.5(5) min β+ 135Pr (1/2+)
136Nd 60 76 135.914976(13) 50.65(33) min β+ 136Pr 0+
137Nd 60 77 136.914563(13) 38.5(15) min β+ 137Pr 1/2+
137mNd 519.43(20) keV 1.60(15) s IT 137Nd 11/2–
138Nd 60 78 137.911951(12) 5.04(9) h β+ 138Pr 0+
138mNd 3174.5(4) keV 370(5) ns IT 138Nd 10+
139Nd 60 79 138.911951(30) 29.7(5) min β+ 139Pr 3/2+
139m1Nd 231.16(5) keV 5.50(20) h β+ (87.0%) 139Pr 11/2–
IT (13.0%) 139Nd
139m2Nd 2616.9(6) keV 276.8(18) ns IT 139Nd 23/2
140Nd 60 80 139.9095461(35) 3.37(2) d EC 140Pr 0+
140m1Nd 2221.65(9) keV 600(50) μs IT 140Nd 7–
140m2Nd 7435.1(4) keV 1.22(6) μs IT 140Nd 20+
141Nd 60 81 140.9096167(34) 2.49(3) h EC (97.28%) 141Pr 3/2+
β+ (2.72%)
141mNd 756.51(5) keV 62.0(8) s IT (99.97%) 141Nd 11/2–
β+ (0.032%) 141Pr
142Nd 60 82 141.9077288(13) Stable 0+ 0.27153(40)
143Nd 60 83 142.9098198(13) Observationally Stable 7/2− 0.12173(26)
144Nd 60 84 143.9100928(13) 2.29(16)×1015 y α 140Ce 0+ 0.23798(19)
145Nd 60 85 144.9125792(14) Observationally Stable 7/2− 0.08293(12)
146Nd 60 86 145.9131225(14) Observationally Stable 0+ 0.17189(32)
147Nd 60 87 146.9161060(14) 10.98(1) d β 147Pm 5/2−
148Nd 60 88 147.9168990(22) Observationally Stable 0+ 0.05756(21)
149Nd 60 89 148.9201546(22) 1.728(1) h β 149Pm 5/2−
150Nd 60 90 149.9209013(12) 9.3(7)×1018 y ββ 150Sm 0+ 0.05638(28)
151Nd 60 91 150.9238394(12) 12.44(7) min β 151Pm 3/2+
152Nd 60 92 151.924691(26) 11.4(2) min β 152Pm 0+
153Nd 60 93 152.9277179(29) 31.6(10) s β 153Pm (3/2)−
153mNd 191.71(16) keV 1.10(4) μs IT 153Nd (5/2)+
154Nd 60 94 153.9295974(11) 25.9(2) s β 154Pm 0+
154mNd 1297.9(4) keV 3.2(3) μs IT 154Nd (4−)
155Nd 60 95 154.9331356(98) 8.9(2) s β 155Pm (3/2−)
156Nd 60 96 155.9353704(14) 5.06(13) s β 156Pm 0+
156mNd 1431.3(4) keV 365(145) ns IT 156Nd 5−
157Nd 60 97 156.9393511(23) 1.17(4) s β 157Pm 5/2−#
158Nd 60 98 157.9422056(14) 810(30) ms β 158Pm 0+
158mNd 1648.1(14) keV 339(20) ns IT 158Nd (6−)
159Nd 60 99 158.946619(32) 500(30) ms β 159Pm 7/2+#
160Nd 60 100 159.949839(50) 439(37) ms β 160Pm 0+
160mNd 1107.9(9) keV 1.63(21) μs IT 160Nd (4−)
161Nd 60 101 160.95466(43)# 215(76) ms β 161Pm 1/2−#
162Nd 60 102 161.95812(43)# 310(200) ms β 162Pm 0+
163Nd 60 103 162.96341(54)# 80# ms
[>550 ns]
5/2−#
This table header & footer:
  1. mNd – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold half-life – nearly stable, half-life longer than age of universe.
  5. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. Modes of decay:
  7. Bold symbol as daughter – Daughter product is stable.
  8. ( ) spin value – Indicates spin with weak assignment arguments.
  9. Fission product
  10. Believed to undergo α decay to 139Ce with a half-life over 1.1×1020 years
  11. Primordial radionuclide
  12. Believed to undergo α decay to 141Ce with a half-life of over 6.1×1019 years
  13. Believed to undergo ββ decay to 146Sm, or α decay to 142Ce with a half-life of over 3.3×1021 years
  14. Believed to undergo ββ decay to 148Sm with a half-life over 3×1018 years, or α decay to 144Ce with a half-life of over 1.2×1019 years

See also

Daughter products other than neodymium

  • Isotopes of samarium
  • Isotopes of promethium
  • Isotopes of praseodymium
  • Isotopes of cerium

wikipedia, wiki, encyclopedia, book, library, article, read, free download, Information about Isotopes of neodymium, What is Isotopes of neodymium? What does Isotopes of neodymium mean?