Neolithic Revolution

The Neolithic Revolution, also known as the First Agricultural Revolution, was the wide-scale transition of many human cultures during the Neolithic period from the egalitarian lifestyle of (semi-)nomadic hunter-gatherers to one of agriculture, settlement and increasing social differentiation.

Archaeological data indicate that the food producing domestication of some types of wild animals and plants happened independently in separate locations worldwide, starting in Mesopotamia after the end of the last Ice Age, around 11,700 years ago. It greatly narrowed the variety of high-quality food available, leading to a deterioration in human nutrition compared to what was previously available through hunting and foraging. However, the efficient production of large quantities of calorie-rich crop allowed humans to invest their efforts in other activities and was therefore "ultimately necessary to the rise of modern civilization" with it's process of industrialization and economic growth up to the limits.

The Neolithic Revolution encompassed much more than just the introduction of various food production techniques. Cultivating large areas of land and erecting monumental structures such as Göbekli Tepe required a level of labour that the small groups of nomadic hunter-gatherers who had hitherto dominated human prehistory could hardly have achieved on their own. Therefore, some modern scientists assume that the era discussed here was also accompanied by the establishment of cross-group organisations. The small communities, which had previously lived autonomously and often in competition with each other decided instead to cooperate, forming first alliances, that began to settle down and build permanent villages near their agricultural land. Over the following millennia, the most successful of these have grown into the city-states, which are mentioned in the oldest written documents of mankind (cf. Shuruppak). These proverbially antediluvian societies radically altered their natural environment through animal breeding, deforestation, cultivation of certain crops and irrigation. Other developments that began to spread are pottery and polished stone tools, and the change from round to rectangular dwellings. In many regions, agriculture enabled the production of food surpluses, which in turn resulted in rapid population growth, a phenomenon known as the Neolithic demographic transition.

These developments are sometimes called the Neolithic package. Including earliest political alliances – whose massive influence on the landscape of Eden and the later myths about creation of mankind in this area may be impressively described in the Atrahasis epic –, they form the backdrop to an increasing division of labour, leading to the emergence of centralised administrations and specialised crafts, in line with hierarchical ideologies, expanding trade and military operations, depersonalised systems of knowledge (e.g. writing), aggregation of property and architecture in densely populated settlements, whose often monumental art primarily proclaim the power of the founders, depicting them as gods.

Among the oldest known large-scale structures in human history are the circular formations of anthropomorphic megalith pillars at Göbekli Tepe in northern Mesopotamia (built around 9,500 BP); the earliest written records originate from the Sumerian civilisation, which also emerged in the Fertile Crescent (c. 6,500 BP) and heralded the beginning of the Bronze Age. The relationship of the aforementioned Neolithic characteristics to the onset of agriculture, their sequence of emergence, and their empirical relation to each other at various Neolithic sites remains the subject of academic debate. It is usually understood to vary from place to place, rather than being the outcome of universal laws of social evolution.

Background

Prehistoric hunter-gatherers had different subsistence requirements and lifestyles from agriculturalists. They lived in relatively small groups that were often very mobile (migratory), built only temporary shelters, and had limited contact with foreign communities. The self-sufficient economy of such groups explains their mutual competition for available resources. Territorial conflicts, as sometimes documented by the actors themselves in rock carvings, were therefore not uncommon in human prehistory, but Aristotle already assumed that Homo sapiens – defined by him as zoon politicon – differed from all other animal species primarily in its ability to form political alliances. His highly evolved reason allowed him to cooperate with foreign groups based on an understanding of the advantages of such measures, and to do so ‘much earlier than previously believed by research’ (Klaus Schmidt).

Agriculture represents another achievement of our reason. It differs strongly in terms of content from the initial formation of cross-group organisations, which is why both may have been introduced independently of each other, even if they mostly merged in the course of further demographic and civilisational development. The diet of hunter-gatherers was and is well-balanced though heavily dependent on what the environment could provide each season. In contrast, because the surplus and plannable supply of food provided by agriculture made it possible to support larger population groups, agriculturalists lived in more permanent dwellings in more densely populated settlements than what could be supported by a hunter-gatherer lifestyle. The agricultural communities' seasonal need to plan and coordinate resource and manpower encouraged division of labour, which gradually led to specialization of labourers and complex societies. The subsequent development of trading networks to exchange surplus commodities and services brought agriculturalists into contact with outside groups, which promoted cultural exchanges that led to the rise of civilizations and technological evolutions.[full citation needed]

However, higher population and food abundance did not necessarily correlate with improved health. Reliance on a very limited variety of staple crops can adversely affect health even while making it possible to feed more people. As an example from the Americas, maize is deficient in certain essential amino acids (lysine and tryptophan) and is a poor source of iron. The phytic acid it contains may inhibit nutrient absorption. Other factors that likely affected the health of early agriculturalists and their domesticated livestock would have been increased numbers of parasites and disease-bearing pests associated with human waste and contaminated food and water supplies. Fertilizers and irrigation may have increased crop yields but also would have promoted proliferation of insects and bacteria in the local environment while grain storage attracted additional insects and rodents.

Agricultural transition

The term 'neolithic revolution' was invented by V. Gordon Childe in his book Man Makes Himself (1936). Childe introduced it as the first in a series of agricultural revolutions in Middle Eastern history, calling it a "revolution" to denote its significance, the degree of change to communities adopting and refining agricultural practices.

The beginning of this process in different regions has been dated from 10,000 to 8,000 BCE in the Fertile Crescent, and perhaps 8000 BCE in the Kuk Early Agricultural Site of Papua New Guinea in Melanesia. Everywhere, this transition is associated with a change from a largely nomadic hunter-gatherer way of life to a more settled, agrarian one, with the domestication of various plant and animal species – depending on the species locally available, and influenced by local culture. Archaeological research in 2003 suggests that in some regions, such as the Southeast Asian peninsula, the transition from hunter-gatherer to agriculturalist was not linear, but region-specific.

  • Modern distribution of the haplotypes of PPNB farmers
  • Genetic distance between PPNB farmers and modern populations

South Asia

Expansion to South Asia
Early Neolithic sites in the Near East and South Asia 10,000–3,800 BP
Neolithic dispersal from the Near East to South Asia suggested by the time of establishment of Neolithic sites as a function of distance from Gesher, Israel. The dispersal rate amounts to about 0.6 km per year

The earliest Neolithic site in South Asia is Mehrgarh, dated to between 6500 and 5500 BCE, in the Kachi plain of Balochistan, Pakistan; the site has evidence of farming (wheat and barley) and herding (cattle, sheep and goats).

There is strong evidence for causal connections between the Near-Eastern Neolithic and that further east, up to the Indus Valley. There are several lines of evidence that support the idea of connection between the Neolithic in the Near East and in the Indian subcontinent. The prehistoric site of Mehrgarh in Baluchistan (modern Pakistan) is the earliest Neolithic site in the north-west Indian subcontinent, dated as early as 8500 BCE.

Neolithic domesticated crops in Mehrgarh include more than 90% barley and a small amount of wheat. There is good evidence for the local domestication of barley and the zebu cattle at Mehrgarh, but the wheat varieties are suggested to be of Near-Eastern origin, as the modern distribution of wild varieties of wheat is limited to Northern Levant and Southern Turkey.

A detailed satellite map study of a few archaeological sites in the Baluchistan and Khybar Pakhtunkhwa regions also suggests similarities in early phases of farming with sites in Western Asia. Pottery prepared by sequential slab construction, circular fire pits filled with burnt pebbles, and large granaries are common to both Mehrgarh and many Mesopotamian sites.

The postures of the skeletal remains in graves at Mehrgarh bear strong resemblance to those at Ali Kosh in the Zagros Mountains of southern Iran. Despite their scarcity, the Carbon-14 and archaeological age determinations for early Neolithic sites in Southern Asia exhibit remarkable continuity across the vast region from the Near East to the Indian Subcontinent, consistent with a systematic eastward spread at a speed of about 0.65 km/yr.

Causes

The most prominent of several theories (not mutually exclusive) as to factors that caused populations to develop agriculture include:

  • The Oasis Theory, originally proposed by Raphael Pumpelly in 1908, popularized by V. Gordon Childe in 1928 and summarised in Childe's book Man Makes Himself. This theory maintains that as the climate got drier due to the Atlantic depressions shifting northward, communities contracted to oases where they were forced into close association with animals, which were then domesticated together with planting of seeds. However, this theory now has little support amongst archaeologists because subsequent climate data suggests that the region was getting wetter rather than drier.
  • The Hilly Flanks hypothesis, proposed by Robert John Braidwood in 1948, suggests that agriculture began in the hilly flanks of the Taurus and Zagros Mountains, where the climate was not drier as Childe had believed, and fertile land supported a variety of plants and animals amenable to domestication.
  • The Feasting model by Brian Hayden suggests that agriculture was driven by ostentatious displays of power, such as giving feasts, to exert dominance. This required assembling large quantities of food, which drove agricultural technology.
  • The Demographic theories proposed by Carl Sauer and adapted by Lewis Binford and Kent Flannery posit an increasingly sedentary population that expanded up to the carrying capacity of the local environment and required more food than could be gathered. Various social and economic factors helped drive the need for food.
  • The evolutionary/intentionality theory, developed by David Rindos and others, considers agriculture as an evolutionary adaptation of plants and humans. Starting with domestication by protection of wild plants, it resulted specialization of location and then complete domestication.[citation needed]
  • Peter Richerson, Robert Boyd, and Robert Bettinger make a case for the development of agriculture coinciding with an increasingly stable climate at the beginning of the Holocene. Ronald Wright's book and Massey Lecture Series A Short History of Progress popularized this hypothesis.
  • Leonid Grinin argues that whatever plants were cultivated, the independent invention of agriculture always occurred in special natural environments (e.g., South-East Asia). It is supposed that the cultivation of cereals started somewhere in the Near East: in the hills of Israel or Egypt. So Grinin dates the beginning of the agricultural revolution within the interval 12,000 to 9,000 BP, though in some cases the first cultivated plants or domesticated animals' bones are even of a more ancient age of 14–15 thousand years ago.
  • Andrew Moore suggested that the Neolithic Revolution originated over long periods of development in the Levant, possibly beginning during the Epipaleolithic. In "A Reassessment of the Neolithic Revolution", Frank Hole further expanded the relationship between plant and animal domestication. He suggested the events could have occurred independently during different periods of time, in as yet unexplored locations. He noted that no transition site had been found documenting the shift from what he termed immediate and delayed return social systems.[further explanation needed] He noted that the full range of domesticated animals (goats, sheep, cattle and pigs) were not found until the sixth millennium BCE at Tell Ramad. Hole concluded that "close attention should be paid in future investigations to the western margins of the Euphrates basin, perhaps as far south as the Arabian Peninsula, especially where wadis carrying Pleistocene rainfall runoff flowed."

Consequences

Social change

Despite the significant technological advance and advancements in knowledge, arts and trade, the Neolithic revolution did not lead immediately to a rapid growth of population. Its benefits appear to have been offset by various adverse effects, mostly diseases and warfare.

The introduction of agriculture has not necessarily led to unequivocal progress. The nutritional standards of the growing Neolithic populations were inferior to that of hunter-gatherers. Several ethnological and archaeological studies conclude that the transition to cereal-based diets caused a reduction in life expectancy and stature, an increase in infant mortality and infectious diseases, the development of chronic, inflammatory or degenerative diseases (such as obesity, type 2 diabetes and cardiovascular diseases) and multiple nutritional deficiencies, including vitamin deficiencies, iron deficiency anemia and mineral disorders affecting bones (such as osteoporosis and rickets) and teeth. Average height for Europeans went down from 178 centimetres (5 ft 10 in) for men and 168 centimetres (5 ft 6 in) for women to 165 and 155 centimetres (5 ft 5 in and 5 ft 1 in) respectively, and it took until the twentieth century for average height for Europeans to return to the pre-Neolithic Revolution levels.

The traditional view is that agricultural food production supported a denser population, which in turn supported larger sedentary communities, the accumulation of goods and tools, and specialization in diverse forms of new labor. Food surpluses made possible the development of a social elite who were not otherwise engaged in agriculture, industry or commerce, but dominated their communities by other means and monopolized decision-making. Nonetheless, larger societies made it more feasible for people to adopt diverse decision making and governance models. Jared Diamond (in The World Until Yesterday) identifies the availability of milk and cereal grains as permitting mothers to raise both an older (e.g. 3 or 4 year old) and a younger child concurrently. The result is that a population can increase more rapidly. Diamond, in agreement with feminist scholars such as V. Spike Peterson, points out that agriculture brought about deep social divisions and encouraged gender inequality. This social reshuffle is traced by historical theorists, like Veronica Strang, through developments in theological depictions. Strang supports her theory through a comparison of aquatic deities before and after the Neolithic Agricultural Revolution, most notably the Venus of Lespugue and the Greco-Roman deities such as Circe or Charybdis: the former venerated and respected, the latter dominated and conquered. The theory, supplemented by the widely accepted assumption from Parsons that "society is always the object of religious veneration", argues that with the centralization of government and the dawn of the Anthropocene, roles within society became more restrictive and were rationalized through the conditioning effect of religion; a process that is crystallized in the progression from polytheism to monotheism.

Subsequent revolutions

Andrew Sherratt has argued that following upon the Neolithic Revolution was a second phase of discovery that he refers to as the secondary products revolution. Animals, it appears, were first domesticated purely as a source of meat. The Secondary Products Revolution occurred when it was recognised that animals also provided a number of other useful products. These included:

  • hides and skins (from undomesticated animals)
  • manure for soil conditioning (from all domesticated animals)
  • wool (from sheep, llamas, alpacas, and Angora goats)
  • milk (from goats, cattle, yaks, sheep, horses, and camels)
  • traction (from oxen, onagers, donkeys, horses, camels, and dogs)
  • guarding and herding assistance (dogs)

Sherratt argued that this phase in agricultural development enabled humans to make use of the energy possibilities of their animals in new ways, and permitted permanent intensive subsistence farming and crop production, and the opening up of heavier soils for farming. It also made possible nomadic pastoralism in semi arid areas, along the margins of deserts, and eventually led to the domestication of both the dromedary and Bactrian camel. Overgrazing of these areas, particularly by herds of goats, greatly extended the areal extent of deserts.

Diet and health

Compared to foragers, Neolithic farmers' diets were higher in carbohydrates but lower in fibre, micronutrients, and protein. This led to an increase in the frequency of carious teeth and slower growth in childhood and increased body fat[clarification needed], and studies have consistently found that populations around the world became shorter after the transition to agriculture. This trend may have been exacerbated by the greater seasonality of farming diets and with it the increased risk of famine due to crop failure.

Throughout the development of sedentary societies, disease spread more rapidly than it had during the time in which hunter-gatherer societies existed. Inadequate sanitary practices and the domestication of animals may explain the rise in deaths and sickness following the Neolithic Revolution, as diseases jumped from the animal to the human population. Some examples of infectious diseases spread from animals to humans are influenza, smallpox, and measles. Ancient microbial genomics has shown that progenitors to human-adapted strains of Salmonella enterica infected up to 5,500 year old agro-pastoralists throughout Western Eurasia, providing molecular evidence for the hypothesis that the Neolithization process facilitated the emergence of Salmonella entericia.

In concordance with a process of natural selection, the humans who first domesticated the big mammals quickly built up immunities to the diseases as within each generation the individuals with better immunities had better chances of survival. In their approximately 10,000 years of shared proximity with animals, such as cows, Eurasians and Africans became more resistant to those diseases compared with the indigenous populations encountered outside Eurasia and Africa. For instance, the population of most Caribbean and several Pacific Islands have been completely wiped out by diseases. 90% or more of many populations of the Americas were wiped out by European and African diseases before recorded contact with European explorers or colonists. Some cultures like the Inca Empire did have a large domestic mammal, the llama, but llama milk was not drunk, nor did llamas live in a closed space with humans, so the risk of contagion was limited. According to bioarchaeological research, the effects of agriculture on dental health in Southeast Asian rice farming societies from 4000 to 1500 BP was not detrimental to the same extent as in other world regions.

Jonathan C. K. Wells and Jay T. Stock have argued that the dietary changes and increased pathogen exposure associated with agriculture profoundly altered human biology and life history, creating conditions where natural selection favoured the allocation of resources towards reproduction over somatic effort.

Comparative chronology

See also

  • Broad spectrum revolution – Hypothesized increase in dietary range during the Neolithic Revolution
  • Green Revolution – Agricultural developments in 1950s–1960s
  • Industrial Revolution – 1760–1840 agrarian to industrial era shift
  • Secondary products revolution – Widespread and broadly contemporaneous set of innovations in Old World farming
  • Upper Paleolithic revolution – The idea that humans not "modern" before 50,000 years ago,
  • Urban revolution – Process by which villages transform into urban societies

Further reading

  • Taiz, Lincoln. "Agriculture, plant physiology, and human population growth: past, present, and future." Theoretical and Experimental Plant Physiology 25 (2013): 167–181.

Bibliography

  • Bailey, Douglass. (2001). Balkan Prehistory: Exclusions, Incorporation and Identity. Routledge Publishers. ISBN 0-415-21598-6.
  • Bailey, Douglass. (2005). Prehistoric Figurines: Representation and Corporeality in the Neolithic. Routledge Publishers. ISBN 0-415-33152-8.
  • Balter, Michael (2005). The Goddess and the Bull: Catalhoyuk, An Archaeological Journey to the Dawn of Civilization. New York: Free Press. ISBN 0-7432-4360-9.
  • Bellwood, Peter (2004). First Farmers: The Origins of Agricultural Societies. Blackwell. ISBN 0-631-20566-7.
  • Bocquet-Appel, Jean-Pierre, editor and Ofer Bar-Yosef, editor, The Neolithic Demographic Transition and its Consequences, Springer (21 October 2008), hardcover, 544 pages, ISBN 978-1-4020-8538-3, trade paperback and Kindle editions are also available.
  • Cohen, Mark Nathan (1977)The Food Crisis in Prehistory: Overpopulation and the Origins of Agriculture. New Haven and London: Yale University Press. ISBN 0-300-02016-3.
  • Diamond, Jared (2002). "Evolution, Consequences and Future of Plant and Animal Domestication". Nature, Vol 418.
  • Harlan, Jack R. (1992). Crops & Man: Views on Agricultural Origins ASA, CSA, Madison, WI. Hort 306 - READING 3-1
  • Wright, Gary A. (1971). "Origins of Food Production in Southwestern Asia: A Survey of Ideas" Current Anthropology, Vol. 12, No. 4/5 (Oct.–Dec. 1971), pp. 447–477
  • Kuijt, Ian; Finlayson, Bill. (2009). "Evidence for food storage and predomestication granaries 11,000 years ago in the Jordan Valley". PNAS, Vol. 106, No. 27, pp. 10966–10970.

wikipedia, wiki, encyclopedia, book, library, article, read, free download, Information about Neolithic Revolution, What is Neolithic Revolution? What does Neolithic Revolution mean?