Sensory-motor coupling

Sensory-motor coupling is the coupling or integration of the sensory system and motor system. For a given stimulus, there is no one single motor command. "Neural responses at almost every stage of a sensorimotor pathway are modified at short and long timescales by biophysical and synaptic processes, recurrent and feedback connections, and learning, as well as many other internal and external variables".

Overview

The integration of the sensory and motor systems allows an animal to take sensory information and use it to make useful motor actions. Additionally, outputs from the motor system can be used to modify the sensory system's response to future stimuli. To be useful it is necessary that sensory-motor integration be a flexible process because the properties of the world and ourselves change over time. Flexible sensorimotor integration would allow an animal the ability to correct for errors and be useful in multiple situations. To produce the desired flexibility it's probable that nervous systems employ the use of internal models and efference copies.

Transform sensory coordinates to motor coordinates

Prior to movement, an animal's current sensory state is used to generate a motor command. To generate a motor command, first, the current sensory state is compared to the desired or target state. Then, the nervous system transforms the sensory coordinates into the motor system's coordinates, and the motor system generates the necessary commands to move the muscles so that the target state is reached.

Efference copy

An important aspect of sensorimotor integration is the efference copy. The efference copy is a copy of a motor command that is used in internal models to predict what the new sensory state will be after the motor command has been completed. The efference copy can be used by the nervous system to distinguish self-generated environmental changes, compare an expected response to what actually occurs in the environment, and to increase the rate at which a command can be issued by predicting an organism's state prior to receiving sensory input.

Internal model

An internal model is a theoretical model used by a nervous system to predict the environmental changes that result from a motor action. The assumption is that the nervous system has an internal representation of how a motor apparatus, the part of the body that will be moved, behaves in an environment. Internal models can be classified as either a forward model or an inverse model.

Forward model

A forward model is a model used by the nervous system to predict the new state of the motor apparatus and the sensory stimuli that result from a motion. The forward model takes the efference copy as an input and outputs the expected sensory changes. Forward models offer several advantages to an organism.

Advantages:

  • The estimated future state can be used to coordinate movement before sensory feedback is returned.
  • The output of a forward model can be used to differentiate between self-generated stimuli and non-self-generated stimuli.
  • The estimated sensory feedback can be used to alter an animal's perception related to self-generated motion.
  • The difference between the expected sensory state and sensory feedback can be used to correct errors in movement and the model.
  • Motor learning
  • Motor goal
  • Motor coordination
  • Multisensory integration
  • Sensory processing

wikipedia, wiki, encyclopedia, book, library, article, read, free download, Information about Sensory-motor coupling, What is Sensory-motor coupling? What does Sensory-motor coupling mean?