Toral subalgebra

In mathematics, a toral subalgebra is a Lie subalgebra of a general linear Lie algebra all of whose elements are semisimple (or diagonalizable over an algebraically closed field). Over an algebraically closed field, every toral Lie algebra is abelian; thus, its elements are simultaneously diagonalizable.

In semisimple and reductive Lie algebras

A subalgebra of a semisimple Lie algebra is called toral if the adjoint representation of on , is a toral subalgebra. A maximal toral Lie subalgebra of a finite-dimensional semisimple Lie algebra, or more generally of a finite-dimensional reductive Lie algebra,[citation needed] over an algebraically closed field of characteristic 0 is a Cartan subalgebra and vice versa. In particular, a maximal toral Lie subalgebra in this setting is self-normalizing, coincides with its centralizer, and the Killing form of restricted to is nondegenerate.

For more general Lie algebras, a Cartan subalgebra may differ from a maximal toral subalgebra.

In a finite-dimensional semisimple Lie algebra over an algebraically closed field of a characteristic zero, a toral subalgebra exists. In fact, if has only nilpotent elements, then it is nilpotent (Engel's theorem), but then its Killing form is identically zero, contradicting semisimplicity. Hence, must have a nonzero semisimple element, say x; the linear span of x is then a toral subalgebra.

See also

  • Maximal torus, in the theory of Lie groups

wikipedia, wiki, encyclopedia, book, library, article, read, free download, Information about Toral subalgebra, What is Toral subalgebra? What does Toral subalgebra mean?